Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 9978, 2024 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-38693252

RESUMEN

An extremely important oil crop in the world, Helianthus annuus L. is one of the world's most significant members of the Asteraceae family. The rate and extent of seed germination and agronomic features are consistently affecting  by temperature (T) and changes in water potential (ψ). A broad hydrothermal time model with T and ψ components could explain sunflower responses over suboptimal T and ψ. A lab experiment was performed using the HTT model to discover both T and ψ and their interactive effects on sunflower germination and also to figure  out the cardinal Ts values. The sunflower seeds were germinated at temperatures (15 °C, 20 °C, 25 °C and 30 °C); each Ts had five constant ψs of 0, 0.3, 0.6, 0.9, and 1.2 MPa via PEG 6000 as osmotic stress inducer. The results revealed that highest germination index was found in seed grown at 20 °C in distilled water (0 MPa) and the lowest at 30 °C with osmotic stress of (- 1.2 MPa). The highest value of germination rate index was found in seed grown at 20 °C in distilled water (0 MPa) and the lowest at 15 °C with an osmotic stress of (- 1.2 MPa). In conclusion, water potential, temperature, and their interactions have a considerable impact on seed germination rate, and other metrics (GI, SVI-I, GRI, GE, SVI-II, and MGT). Seeds sown  at 20 °C with zero water potential showed high germination metrics such as GE, GP, GRI, and T50%. The maximum value to TTsub noted at 30 °C in - 0.9 MPa osmotic stress and the minimum value was calculated at 15 °C in - 1.2 MPa osmotic stress. The result of TTsupra recorded highest at 15 °C in  controlled group (0 MPa). Moreover, θH was  highest at 30 °C in controlled condition (0 MPa) and minimum value was observed at  20 °C under - 1.2 MPa osmotic stress. The value of θHTT were  maximum at  30 °C in controlled group (0 MPa) and minimum value was  recorded at 15 °C under - 1.2 MPa osmotic potential. The base, optimum and ceiling temperatures for sunflower germination metrics in this experiment were noted  6.8, 20 and 30 °C respectively.


Asunto(s)
Germinación , Helianthus , Presión Osmótica , Semillas , Temperatura , Helianthus/crecimiento & desarrollo , Helianthus/fisiología , Semillas/crecimiento & desarrollo , Agua , Modelos Teóricos
2.
Sci Rep ; 14(1): 3225, 2024 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-38332029

RESUMEN

The maize (Zea mays L.) is a monocot that is a member of the Poaceae family and a valuable feed for livestock, human food, and raw material for various industries. The halothermal time model determines how plants respond to salt (NaCl) stress under sub-optimal conditions. This model examines the relation between NaClb (g), GR, GP, salinity and temperature stress on germination of seeds dynamics in various crops. Five constant temperatures i.e. 20, 25, 30, 35, and 40 °C and five ψ levels (NaCl concentrations converted to ψ - 0, - 0.2, - 0.4, - 0.6, and - 0.8 MPa) were used in this experiment. In light of the results, the maximum halo-thermal time constant value was recorded at 35 °C temperature, while maximum germination percentage was detected at 30 °C in the controlled condition. Moreover, the lowermost value was recorded at 20 °C at - 0.8 MPa osmotic potential. The highest CAT, APX, and GPX activities were recorded at 15 °C at - 0.8 MPa, while the lowest values were observed for 0 MPa at 30 °C temperature. In conclusion, by employing the halo thermal time model, the germination of maize variety (var.30W52) was accurately predicted for the first time under varying levels of temperature and osmotic potentials.


Asunto(s)
Cloruro de Sodio , Zea mays , Humanos , Temperatura , Poaceae , Semillas/fisiología , Germinación/fisiología
3.
ACS Omega ; 8(37): 33266-33279, 2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37744846

RESUMEN

Climatic changes have a direct negative impact on the growth, development, and productivity of crops. The water potential (ψ) and temperature (T) are important limiting factors that influence the rate of seed germination and growth indices. To examine how the germination of seed responds to changes in water potential and temperature, the hydrotime model and hydrothermal model (HTT) have been employed. The HTT calculates the concept of germination time across temperatures, between Tb-To, with alteration, and between Tb-Tc, in supra-optimal ranges. The seeds of Cucumis melo L. were germinated in the laboratory for a hydro-thermal time experiment. Seeds were sown in Petri dishes containing a double-layered filter paper at different osmotic potentials (0, -0.2, -0.4, -0.6, and -0.8 MPa) by providing PEG 6000 (drought stress enhancer) at different temperatures (15, 20, 25, 30, and 35 °C). The controlled replicate was treated with 10 mL of distilled water and the rest with 10 mL of PEG solution. Results indicated that the seed vigor index (SVI-II) was highest at 15 °C with 0 MPa and lowest at 30 °C with -0.2 MPa. However, the highest activity was shown at 15 °C by catalase (CAT) and guaiacol peroxidase (GPX) at (-0.6 MPa), while the lowest values of CAT and GPX were recorded for control at 35 °C with -0.8 MPa at 35 °C, respectively. Germination energy was positively correlated with germination index (GI), germination percentage (G%), germination rate index, seed vigor index-I (SVI-I), mean moisture content (MMC), and root shoot ratio (RSR) and had a negative correlation with mean germination rate, percent moisture content of shoot and root, CAT, superoxide dismutase, peroxidase ascorbate peroxidase, and GPX. In conclusion, thermal and hydrotime models correctly predicted muskmelon germination time in response to varying water potential and temperature. The agronomic attributes were found to be maximum at 30 °C and minimum at 15 °C.

4.
PLoS One ; 18(8): e0289900, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37590216

RESUMEN

There is now widespread agreement that global warming is the source of climate variability and is a global danger that poses a significant challenge for the 21st century. Climate crisis has exacerbated water deficit stress and restricts plant's growth and output by limiting nutrient absorption and raising osmotic strains. Worldwide, Sweet pepper is among the most important vegetable crops due to its medicinal and nutritional benefits. Drought stress poses negative impacts on sweet pepper (Capsicum annuum L.) growth and production. Although, γ aminobutyric acid (GABA) being an endogenous signaling molecule and metabolite has high physio-molecular activity in plant's cells and could induce tolerance to water stress regimes, but little is known about its influence on sweet pepper development when applied exogenously. The current study sought to comprehend the effects of foliar GABA application on vegetative development, as well as physiological and biochemical constituents of Capsicum annuum L. A Field experiment was carried out during the 2021 pepper growing season and GABA (0, 2, and 4mM) concentrated solutions were sprayed on two Capsicum annuum L. genotypes including Scope F1 and Mercury, under drought stress of 50% and 30% field capacity. Results of the study showed that exogenous GABA supplementation significantly improved vegetative growth attributes such as, shoot and root length, fresh and dry weight, as well as root shoot ratio (RSR), and relative water content (RWC) while decreasing electrolyte leakage (EL). Furthermore, a positive and significant effect on chlorophyll a, b, a/b ratio and total chlorophyll content (TCC), carotenoids content (CC), soluble protein content (SPC), soluble sugars content (SSC), total proline content (TPC), catalase (CAT), and ascorbate peroxidase (APX) activity was observed. The application of GABA at 2mM yielded the highest values for these variables. In both genotypes, peroxidase (POD) and superoxide dismutase (SOD) content increased with growing activity of those antioxidant enzymes in treated plants compared to non-treated plants. In comparison with the rest of GABA treatments, 2mM GABA solution had the highest improvement in morphological traits, and biochemical composition. In conclusion, GABA application can improve development and productivity of Capsicum annuum L. under drought stress regimes. In addition, foliar applied GABA ameliorated the levels of osmolytes and the activities of antioxidant enzymes involved in defense mechanism.


Asunto(s)
Capsicum , Antioxidantes , Clorofila A , Sequías , Productos Agrícolas , Deshidratación
5.
ACS Omega ; 8(25): 22788-22808, 2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37396236

RESUMEN

Drought and osmotic stresses are major threats to agricultural crops as they affect plants during their life cycle. The seeds are more susceptible to these stresses during germination and establishment of seedlings. To cope with these abiotic stresses, various seed priming techniques have broadly been used. The present study aimed to assess seed priming techniques under osmotic stress. Osmo-priming with chitosan (1 and 2%), hydro-priming with distilled water, and thermo-priming at 4 °C were used on the physiology and agronomy of Zea mays L. under polyethylene glycol (PEG-4000)-induced osmotic stress (-0.2 and -0.4 MPa). The vegetative response, osmolyte content, and antioxidant enzymes of two varieties (Pearl and Sargodha 2002 White) were studied under induced osmotic stress. The results showed that seed germination and seedling growth were inhibited under osmotic stress and germination percentage, and the seed vigor index was enhanced in both varieties of Z. mays L. with chitosan osmo-priming. Osmo-priming with chitosan and hydro-priming with distilled water modulated the level of photosynthetic pigments and proline, which were reduced under induced osmotic stress; moreover, the activities of antioxidant enzymes were improved significantly. In conclusion, osmotic stress adversely affects the growth and physiological attributes; on the contrary, seed priming ameliorated the stress tolerance resistance of Z. mays L. cultivars to PEG-induced osmotic stress by activating the natural antioxidation enzymatic system and accumulating osmolytes.

6.
ACS Omega ; 8(31): 28207-28232, 2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-38173954

RESUMEN

Dynamic shifts in climatic patterns increase soil salinity and boron levels, which are the major abiotic factors that affect plant growth and secondary metabolism. The present study assessed the role of growth regulators, including biochar (5 g kg-1) and gallic acid (GA, 2 mM), in altering leaf morpho-anatomical and physiological responses of Solanum melongena L. exposed to boron (25 mg kg-1) and salinity stresses (150 mM NaCl). These growth regulators enhanced leaf fresh weight (LFW) (70%), leaf dry weight (LDW) (20%), leaf area (LA), leaf area index (LAI) (85%), leaf moisture content (LMC) (98%), and relative water content (RWC) (115%) under salinity and boron stresses. Physiological attributes were analyzed to determine the stress levels and antioxidant protection. Photosynthetic pigments were negatively affected by salinity and boron stresses along with a nonsignificant reduction in trehalose, GA, osmoprotectant, and catalase (CAT) and ascorbate peroxidase (APX) activity. These parameters were improved by biochar application to soil and presoaking seeds in GA (p < 0.05) in both varieties of S. melongena L. Scanning electron microscopy (SEM) and light microscopy revealed that application of biochar and GA improved the stomatal regulation, trichome density, epidermal vigor, stomata size (SS) (13 381 µm), stomata index (SI) (354 mm2), upper epidermis thickness (UET) (123 µm), lower epidermis thickness (LET) (153 µm), cuticle thickness (CT) (11.4 µm), trichome density (TD) (23 per mm2), vein islet number (VIN) (14 per mm2), vein termination number (VTN) (19 per mm2), midrib thickness (MT) (5546 µm), and TD (27.4 mm2) under salinity and boron stresses. These results indicate that the use of inexpensive and easily available biochar and seed priming with GA can improve morpho-anatomical and physiological responses of S. melongena L. under oxidative stress conditions.

7.
Plants (Basel) ; 11(13)2022 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-35807572

RESUMEN

Water, a necessary component of cell protoplasm, plays an essential role in supporting life on Earth; nevertheless, extreme changes in climatic conditions limit water availability, causing numerous issues, such as the current water-scarce regimes in many regions of the biome. This review aims to collect data from various published studies in the literature to understand and critically analyze plants' morphological, growth, yield, and physio-biochemical responses to drought stress and their potential to modulate and nullify the damaging effects of drought stress via activating natural physiological and biochemical mechanisms. In addition, the review described current breakthroughs in understanding how plant hormones influence drought stress responses and phytohormonal interaction through signaling under water stress regimes. The information for this review was systematically gathered from different global search engines and the scientific literature databases Science Direct, including Google Scholar, Web of Science, related studies, published books, and articles. Drought stress is a significant obstacle to meeting food demand for the world's constantly growing population. Plants cope with stress regimes through changes to cellular osmotic potential, water potential, and activation of natural defense systems in the form of antioxidant enzymes and accumulation of osmolytes including proteins, proline, glycine betaine, phenolic compounds, and soluble sugars. Phytohormones modulate developmental processes and signaling networks, which aid in acclimating plants to biotic and abiotic challenges and, consequently, their survival. Significant progress has been made for jasmonates, salicylic acid, and ethylene in identifying important components and understanding their roles in plant responses to abiotic stress. Other plant hormones, such as abscisic acid, auxin, gibberellic acid, brassinosteroids, and peptide hormones, have been linked to plant defense signaling pathways in various ways.

8.
PLoS One ; 16(8): e0248200, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34358230

RESUMEN

Water being a vital part of cell protoplasm plays a significant role in sustaining life on earth; however, drastic changes in climatic conditions lead to limiting the availability of water and causing other environmental adversities. α-tocopherol being a powerful antioxidant, protects lipid membranes from the drastic effects of oxidative stress by deactivating singlet oxygen, reducing superoxide radicals, and terminating lipid peroxidation by reducing fatty acyl peroxy radicals under drought stress conditions. A pot experiment was conducted and two groups of lentil cultivar (Punjab-2009) were exposed to 20 and 25 days of drought induced stress by restricting the availability of water after 60th day of germination. Both of the groups were sprinkled with α-tocopherol 100, 200 and 300 mg/L. Induced water deficit stress conditions caused a pronounced decline in growth parameters including absolute growth rate (AGR), leaf area index (LAI), leaf area ratio (LAR), root shoot ratio (RSR), relative growth rate (RGR), chlorophyll a, b, total chlorophyll content, carotenoids, and soluble protein content (SPC) which were significantly enhanced by exogenously applied α-tocopherol. Moreover, a significant increase was reported in total proline content (TPC), soluble sugar content (SSC), glycine betaine (GB) content, endogenous tocopherol levels, ascorbate peroxidase (APX), catalase (CAT) peroxidase (POD) and superoxide dismutase (SOD) activities. On the contrary, exogenously applied α-tocopherol significantly reduced the concentrations of malondialdehyde (MDA) and hydrogen peroxide (H2O2). In conclusion, it was confirmed that exogenous application of α-tocopherol under drought induced stress regimes resulted in membrane protection by inhibiting lipid peroxidation, enhancing the activities of antioxidative enzymes (APX, CAT, POD, and SOD) and accumulation of osmolytes such as glycine betaine, proline and sugar. Consequently, modulating different growth, physiological and biochemical attributes.


Asunto(s)
Antioxidantes/farmacología , Lens (Planta)/crecimiento & desarrollo , alfa-Tocoferol/farmacología , Ascorbato Peroxidasas/metabolismo , Catalasa/metabolismo , Producción de Cultivos , Deshidratación , Peróxido de Hidrógeno/metabolismo , Lens (Planta)/efectos de los fármacos , Lens (Planta)/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Malondialdehído/metabolismo , Peroxidasa/metabolismo , Superóxido Dismutasa/metabolismo
9.
BMC Complement Altern Med ; 16: 141, 2016 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-27229148

RESUMEN

BACKGROUND: Artemisia macrocephala Jacquem (A. macrocephala), locally known as "Tarkha", is a perennial plant found abundantly in northern areas of Pakistan. It is widely used in traditional medicine to treat fever, pain, gastrointestinal disorders and diabetes. Till date, no published studies are available regarding the in-vivo antinociceptive potential of the crude extract and sub-fractions from the aerial parts of A. macrocephala. METHODS: Antinociceptive effects of the crude methanolic extract and its sub-fractions were assessed using experimental pain models, including chemical nociception induced by intraperitoneal acetic acid or subplantar formalin injection and thermal nociception like tail immersion test in-vivo. RESULTS: The administration of various doses of crude extract and its fractions showed a dose-dependent indomethacin like antinociceptive effect in acetic acid induced writhing, subplantar formalin injection animal model suggesting the involvement of central mechanism of pain inhibition. Moreover, the crude extract and sub-fractions, on tail flick model (thermal nociception) demonstrated the involvement of central mechanism and significantly increased the latency time to 66.54, 82.94 and 70.53 %. The antagonistic study proposed the possible involvement of opioid receptor using naloxone as non-selective antagonist. The pharmacologically active chloroform and ethyl acetate fractions were further subjected to column chromatography that lead to the isolation four compounds. These isolated compounds were then subjected to various spectroscopic techniques upon which they were confirmed to be one sterol and three flavonoid derivatives. These findings suggest that Artemisia macrocephala possesses peripheral and central analgesic potentials partially associated with opioid system that support its folkloric use for the management of pain. The isolated compounds are currently under investigation in our laboratory for analgesic activity and its possible mechanism of action. CONCLUSION: The results in this study provide evidences that A. macrocrphala has anticonciceptive effects and can be used for treatment of pain in traditional therapies. This study opens a new channel for isolation of analgesic compounds from the specie that is used traditionally for the management of pain.


Asunto(s)
Artemisia/química , Extractos Vegetales/farmacología , Animales , Artemisia/toxicidad , Femenino , Masculino , Ratones , Pakistán , Extractos Vegetales/toxicidad
10.
BMC Complement Altern Med ; 14: 485, 2014 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-25494624

RESUMEN

BACKGROUND: The fruit of Rosa moschata has traditionally been used for the treatment of abdominal spasm and diarrhoea. Therefore, the aim of this study was to investigate mechanism(s) responsible for its medicinal use in gut spasm and diarrhea. METHODS: Hydro-methanolic extract of Rosa moschata (Rm.Cr) was studied in isolated rabbit's jejunal preparations for possible antispasmodic activity. Based upon in vitro relaxant activity in isolated gut preparations, in vivo antidiarrheal activity was carried out in mice to confirm its antidiarrheal effect. Acute toxicity study was performed to determine safe dose range before in vivo experiments. RESULTS: In isolated rabbits' jejunal preparations, Rm.Cr inhibited the spontaneous and high K+-induced contractions with respective EC50 values of 0.66 (0.44-0.97; n = 5) and 2.28 mg/mL (1.43-3.62; n = 5), like that of verapamil. This suggests the presence of calcium channel blocking (CCB) activity as a possible mode of action. The Ca++ channel blocking activity was further confirmed when pre-treatment of isolated jejunums with Rm.Cr (1-5 mg/mL) caused a rightward shift in the Ca++ concentration-response curves (CRCs), similar to verapamil. Rm.Cr was safe up to 2000 mg/kg for in vivo acute toxicity. Rm.Cr provided 55% and 80% protection from diarrhoea in respective doses of 100 mg/kg and 1000 mg/kg. These data indicates that the crude extract of Rosa moschata possesses Ca++ antagonist-like constituent(s), which explains its inhibitory effect on gut motility; a mechanism that underlies its antidiarrheal and antispasmodic activities. CONCLUSION: The study shows that the crude extract of fruits of Rosa moschata possesses antispasmodic effects mediated possibly through voltage gated Ca++ channel blockade, which provides sound pharmacological base to its medicinal use in gut spasms and diarrhoea, though additional mechanism(s) cannot be ruled out.


Asunto(s)
Antidiarreicos/uso terapéutico , Diarrea/tratamiento farmacológico , Fármacos Gastrointestinales/uso terapéutico , Yeyuno/efectos de los fármacos , Parasimpatolíticos/uso terapéutico , Fitoterapia , Rosa , Animales , Antidiarreicos/farmacología , Calcio/metabolismo , Bloqueadores de los Canales de Calcio/farmacología , Bloqueadores de los Canales de Calcio/uso terapéutico , Femenino , Frutas , Fármacos Gastrointestinales/farmacología , Motilidad Gastrointestinal/efectos de los fármacos , Masculino , Ratones Endogámicos BALB C , Parasimpatolíticos/farmacología , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Potasio/metabolismo , Conejos , Espasmo/tratamiento farmacológico , Verapamilo/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...